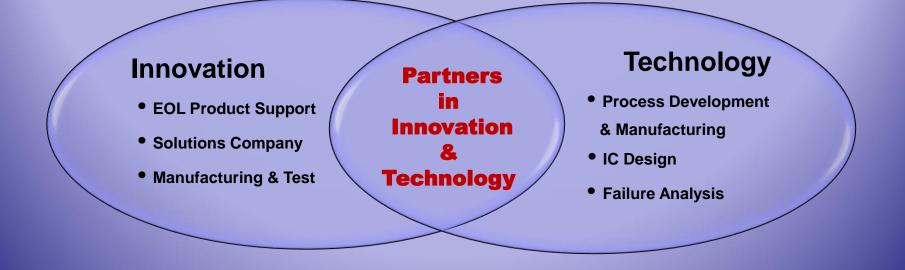

Chip Recovery "ChiPR" Product: Breathing New Life Into Obsolescence

2015 ERAI Executive Conference Hyatt Bayfront, San Diego CA April 21-23, 2015 Presented by Marty Lanning, XTREME Semiconductor and Erick Spory, Global Circuit Innovations

In Partnership with

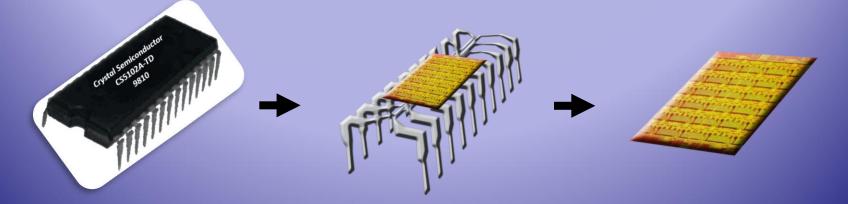

Chip Recovery "ChiPR" Product "Breathing New Life into Obsolescence"

Chip Recovery "ChiPR" Product

What Drives Today's Component Obsolescence in Military Systems?

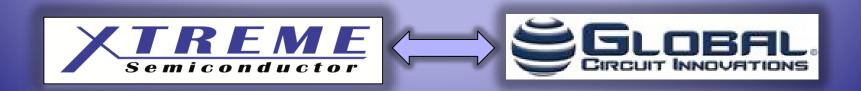
Military Demand for IC's in Critical System Designs with 20+ Year Life Cycles

t

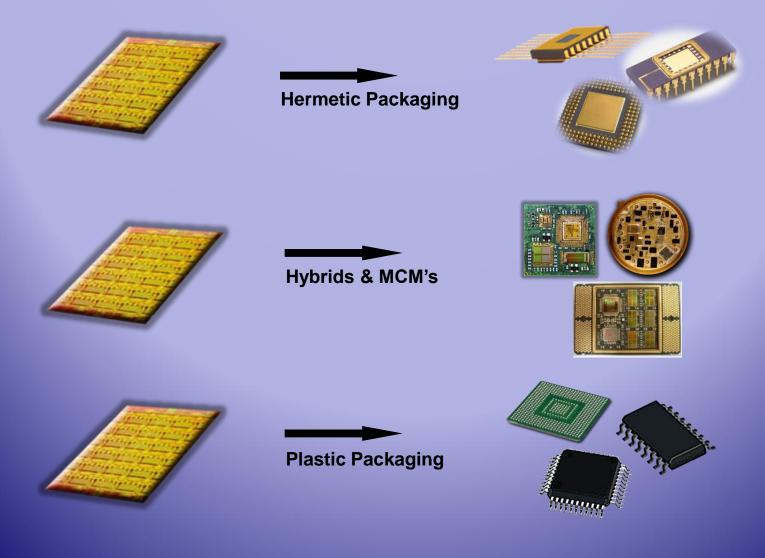

Military Dependence on Commercial IC's with 2-3 Year Product Life Cycles

Increasing Demand for Obsolete

Components


What is Chip Recovery "ChiPR" Product?

- Innovative Solution for Obsolete IC's
- Cost Effective Alternative Solution to other higher cost solutions such as redesign
- Semiconductor design, manufacturing, and testing programs meet or exceed Military Specs for Quality and Reliability



Benefits of Chip Recovery "ChiPR" Product

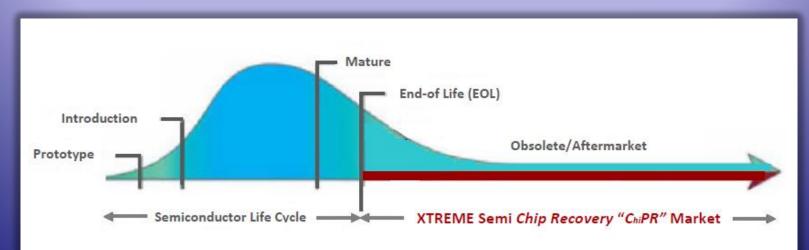
- Access to XTREME Semiconductor and Global Circuit Innovations Engineering Staff, specializing in High Temperature and Obsolete part solutions
- Extend the life of your obsolete parts 5-10 years
- Eliminate the threat of counterfeit parts from entering your supply chain

Uses for Chip Recovery "ChiPR" Die

Uses for Chip Recovery "ChiPR" Product

Re-manufacturing of Obsolete Components

- Cost effective solution eliminating costly redesign
- Guaranteed Performance of the original OCM device


Enhanced Performance in High Temperature Applications

- Industrial
- Military
- Down-Hole Exploration/Geophysical
- Customized Products to Maximize Performance

Chip Recovery: Product Standards

- XTREME Semiconductor manufactures in strict compliance with industry standard for assembly, test and qualification.
- Manufactured to be MIL-STD-883 compatible product
 - Manufactured on MIL-PRF-38535 QML Certified Line
 - Tested and Screened to MIL-STD-883 (processes and procedures)
- Guaranteed to meet original OCM data sheet or specification requirements.

Chip Recovery: Assembly, Test, & Qual

- Ceramic & Hermetic Package Design & Assembly
 - Monolithic, MCM, Custom Packaging
- Screening
 - MIL-STD-883 Compatible
 - Industrial, Military, Custom Screening Flows (SCD's)
- Electrical Test
 - Temperature Testing from -55° to +125°C
 - Burn In, Dynamic & Static
 - Software Development
- Quality Conformance Inspection
 - MIL-STD-883, Lot Qualification Group A, B, C and D

Chip Recovery "ChiPR" Product

- All Chip Recovery "CmPR" product is clearly identified;
- All correspondence, including the final quote, states the product contains extracted die;
- XTREME Semiconductor works closely with the customer to define the appropriate qualification plan based on their application and requirements.

Successful Chip Recovery "ChiPR" Product

- Solved Product Obsolescence issue for our Customer
- AD746SRC Replacement for OP215BRC
- 79% Overall Yield Die Extraction through finished product
- Test yield attributed to commercial grade product upscreening

XT746SRC-2A MILITARY CLASS B ASSEMBLY/TEST			
Process	Description	QTY	
Die extraction	AD746JRZ, 8-pin SOIC	154	
Assembly	20-pin Ceramic LCC - MIL-STD-883 M5004 Class B	*149	
Environmental	MIL-STD-883 M5004 (CA, TC, FL and GL)	139	
Pre-Test	AD746 Data Sheet Electrical, +25C	122	
Burn-in	MIL-STD-883 M5004, Test Condition 1015, 160hrs	122	
Post-Test	AD746 Data Sheet Electrical, +25C	122	
Final Test	AD746 Data Sheet Electrical, -55, +25 and 125C	122	
* 10pcs pulled out for First Article Inspection			

Successful Chip Recovery "ChiPR" Product

- Solved Product Obsolescence issue for customer
- ADSP1016ASE obsoleted by Analog devices
- Yield losses attributed to commercial grade product up-screening.....99% assembly/test yield

ADSP1016ASE-MT MILITARY CLASS B ASSEMBLY			
Process	Description	QTY	
Die extraction	ADSP1016AJN, 16x16-bit CMOS Multilier	*252	
Assembly	68-pin Ceramic LCC - MIL-STD-883 M5004 Class B	223	
Environmental	Temp Cycle : MIL-STD-883 M5004, Cond.	223	
Environmental	Const. Accel: MIL-STD-883 M5004, Cond.	223	
Environmental	Fine Leak: MIL-STD-883 M5004, Cond.	223	
Environmental	Gross Leak: MIL-STD-883 M5004, Cond.	223	
Electrical Test	Test perfomred at -55 to +125C	221	
Final	QC Inspection, 220pcs shipped to customer	220	
* 5pcs used as assembly set-up samples			
* 18pcs failed M5004 Class B die visual however accepted as commercial grade produc			
* 5pcs used for first article inspection.			
* 2pcs failed electrical test at Military temps, passed 25C testing			

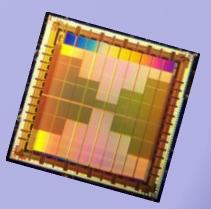
Other Successful Die Extraction Products

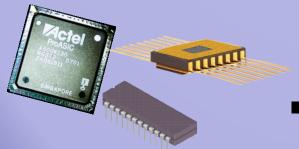
Part Type	Function
K6R4008V1C	4M SRAM
K9F5608OUA	8M Flash
ADLX345	Acceleromter
BMA250	Acceleromter
CS5102A-TEB	AD Converter
LP1114FBD48	ARM Flash MCU
AD746	Bi-FET Op Amp
ADSP1016AJN	CMOS Multiplier
MCP6568	Comparator
EN175	Custom ASIC
TMS320C6657	DSP
AT28C16	EEPROM
\$87C752	EPROM
M1A3PE3000L-FGG	FPGA
XCV800-6BG560	FPGA
A500K130	FPGA
EF6821JV	I/O Controller
SN65LVDM176	Line Transciever
ISL88705	Micro Supervisor
MC6809CM	Microprocessor

Part Type	Function
IXDD609S1A	MOSFET Driver
MTP10N10M	N-Channel MOSFET
CZT3120	NPN Switch
OP221GSZ	Op Amp
OPA2340	Op Amp
OPA678AP	Op Amp
OPA684	Op Amp
THS31001CD	Op Amp
TH\$4522	Op Amp
EL51661SZ	Op Amp
LT1019ACN8-2.5	Precision Reference
TC25C25	PWM Controller
SST25VF063C	Serial Flash
ADG1219BRJZ	SPDT Swtch
EF6840CM	Timer
UCC2581	Voltage PWM
REF5025	Voltage Reference
MAX6350	Voltage Regulator
TLV70233DBVR	Voltage regulator
ICL8038CCPD	Waveform Generator

Analysis of System Redesign Options

Lowest Cost Solution & Fastest Implementation


Highest Cost Solution & Longest Implementation

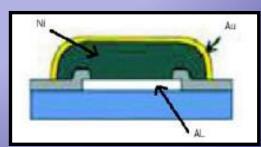

- Original OCM Product Available
 <u>Value Ranking of Available Options</u>
- \$ Chip Recovery Product "ChiPR"
- \$\$ Fabricate New Original OCM Chips
- \$\$\$ Board Redesign
- \$\$\$\$ Emulation/Reverse Engineer
- \$\$\$\$\$ New System Design

Chip Recovery "ChiPR": Processes

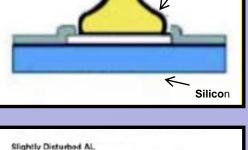
 Removes die from a package undamaged, maintaining original electrical characteristics

Can be performed on any package type

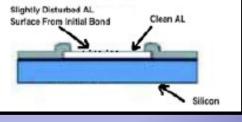
- Results in a "Known-Good" electrically tested die, ready for reassembly
 - Die thinning may also be achieved

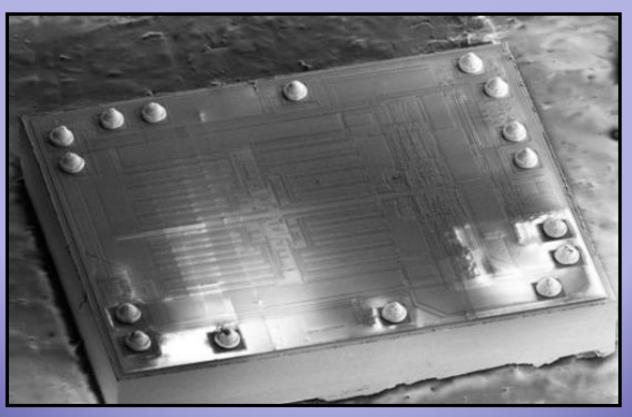


Chip Recovery: Bond Pad Preparations


- 1. Re-Bonding:
 - Wire dressing leaving original Gold Ball bond remnant, allowing for subsequent Gold Ball re-bonding

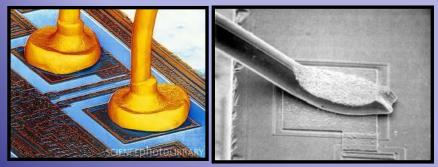
2. Bond Pad Cleaning:


- Gold Ball removal followed by Aluminum Pad cleaning, allowing for Gold Ball or Aluminum Wedge bond
- 3. Pad Re-Conditioning:
 - Gold Ball removal, Aluminum Pad cleaning, followed by Nickle/Au pad build up and replate



Au Ball

Chip Recovery: Bond Pad Re-bonding


Chip Recovery Die ready for re-bonding

Chip Recovery: Bond Pad Re-bonding

Wire Bonding

- Original Gold or Aluminum wires are mechanically removed at the top of the original bond
- Clean, uncontaminated gold or aluminum surface is used for the new, high-adhesion wire connection
- New bond formation is made to original pristine bond, <u>NOT</u> a re-bond.

Original Gold Ball and Aluminum Wedge Bonds

Compound Gold Ball and Aluminum Wedge Bonds

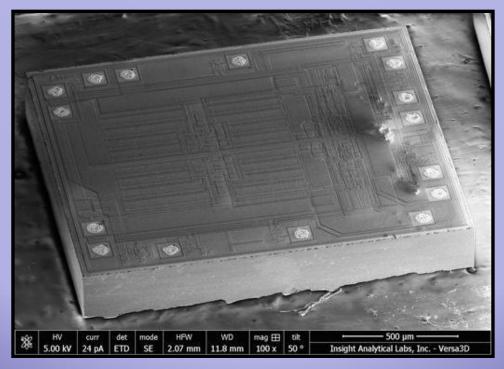
Chip Recovery: Bond Pull Data

Bond Pull Results

- The compound Gold on Gold Wire Connection provides identical bond pull adhesion strength to the OEM device
- The Bond Pull Data is nearly Indistinguishable for Pre and Post Die Extraction

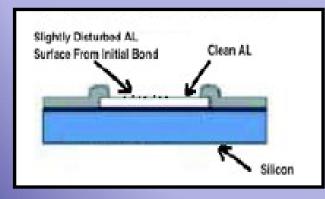
Mean: 3 Sigma

- OEM Gold1 = 4.374 g
- GCI Gold1 = 5.075 g
- GCI Gold2 = 4.342 g

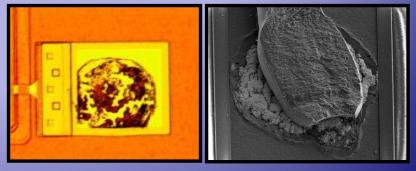

MIL-STD-883H

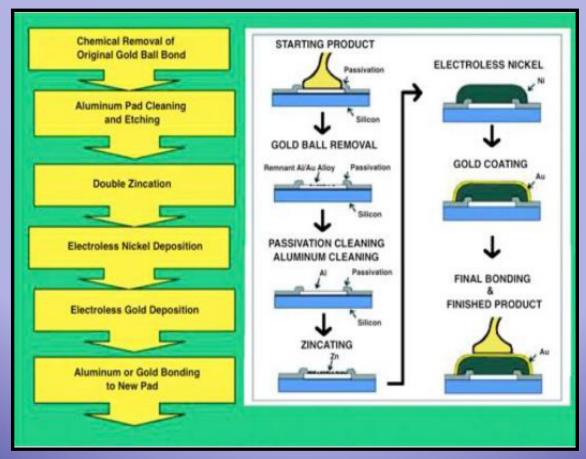
Spec Limit = 3.0 g

Chip Recovery: Bond Pad Cleaning


Chip Recovery Die with Remnant Bond Wires Removed and Pads Cleaned

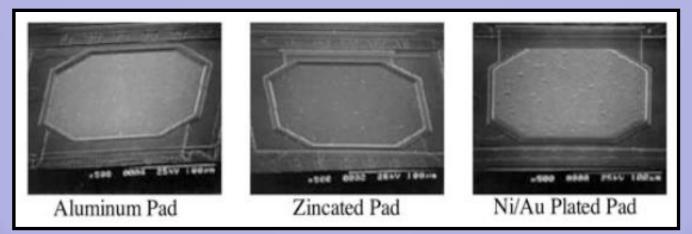
Chip Recovery: Bond Pad Cleaning

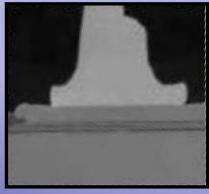

1. Original Gold Ball bond



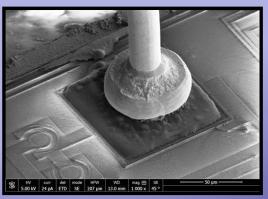
2. After removal of Gold Ball bond

3. New bonding area ready for new Gold Ball or Aluminum Wedge bonding

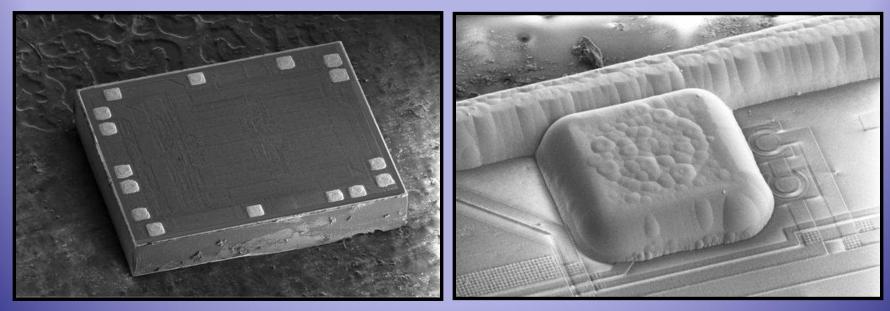




Nickle/Au Metallization UBM (Under-Bump Metal) Process



Ni/Au Metallization UBM process


Cross Section of Au Bond and new Ni/Au Pad

Gold Ball Bond on new Ni/Au Pad

Ni/Au Metallization UBM process

Reconditioned Bond Pads ready for Gold Ball or Aluminum Wedge Bonding

Ni/Au Metallization UBM process

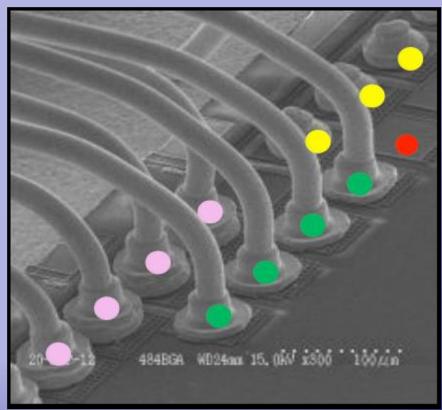
Why consider our Gold Ball removal and Ni/Au Metallization UMB process?

- Eliminates MIL-STD compound bonding concerns and provides bare die with a consistent, predictable bonding surface.
- Proven to provide superior bond strength if original bonding has not been optimized.
 - Conventional Bond Strength: Mean 3 SD = 4.01g
 - Ni/Au Metallization UBM Process: Mean 3 SD = 8.74g
- The new Ni/Au bonding interface dramatically reduces Inter-Metallic Diffusion (Kirkendall Voiding), therefore, creating a much more robust bonding process relative to high temperature (>175C) exposures.
- Provides new metallization compatible with High Reliability and small pitch Gold Ball bonding requirements.

Ni/Au Metallization UBM process

Packaging Option Key

- 1. Standard Plastic Packaged Product
- 2. Die Recovery, Standard Ceramic Assembly
- 3. Die Recovery, High-Temp Ceramic Assembly
- 4. Die Recovery with Ni/Au Reconditioned bond pads, High-Temp Ceramic Assembly
- 5. Die Recovery with Ni/Au Reconditioned bond pads, Standard Ceramic Assembly


Chip Recovery: Bond Remapping and Reassembly Options

Multiple Device configurations for the same ship can be achieved with remapping optional bond outs.

- Memory Devices: Bond options for x4, x8, x16 devices from the same chip
- FPGA's: Reconfigure to create multiple devices from a single chip

Examples of Remapping Options

- Original non-bonded pad, still not bonded
- Original non-bonded pad, now bonded
- Previously bonded pad, now not bonded
- Previously bonded pad, re-bonded with new compound bond.

Chip Recovery "ChiPR" Product

Benefits of Chip Recovery

- Chip Recovery and re-assembly is an excellent solution to IC Component Obsolescence – Solves DMSMS problems.
- Die can be removed from virtually ANY plastic or ceramic package without damaging the die, while maintaining FULL functionality.
- Chip Recovery allows fully functional die to be re-assembled into ANY plastic or ceramic package, MCM, or hybrid module
- Die Shear and Bond Pull data are identical to or exceed original OCM product.
- Allows access to original OCM die stock, while avoiding costly minimum order die or wafer purchases.
- Offers a direct replacement for the original OCM product

Chip Recovery "ChiPR" "Breathing New Life into Obsolescence"

Any Questions?

Marty Lanning *XTREME Semiconductor* Managing Partner mlanning@xtremesemi.com Office: 858-230-6961 Cell: 619-675-1808 Erick Spory Global Circuit Innovations President & CTO Erick.Spory@Gci-Global.com Office: 719-573-6777 x104 Cell: 719-649-0947

